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1 Introduction

The success of large language models (LLMs) on
diverse linguistic tasks (e.g., Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020; Achiam et al.,
2023) fueled an increase in their popularity, and in
the research aiming at assessing their capabilities.
An important domain to test is LLMs’ world knowl-
edge: language training data contains vast amounts
of information about the world, including both ex-
plicit factual data and distributional knowledge,
inferrable via text co-occurrence patterns (Elazar
et al., 2022; Kang and Choi, 2023).

We focus on a specific way to assess general the
world knowledge of LLMs: estimates of seman-
tic plausibility. Plausible sentences conform with
world knowledge whereas implausible sentences
violate it; thus, the ability to distinguish plausi-
ble and implausible sentences is an indicator of
world knowledge. Among the methods for evalu-
ating the linguistic knowledge of LLMs, minimal
sentence pair comparisons of log-likelihoods have
been widely-adopted, as they allow for an unsuper-
vised evaluation of what the model has absorbed
just with pretraining (Futrell et al., 2019; Warstadt
et al., 2020; Hu et al., 2020; Aina and Linzen, 2021;
Pedinotti et al., 2021; Sinha et al., 2022; Kauf et al.,
2023; Misra et al., 2024).

Since recently the focus in NLP shifted towards
LLMs that have been fine-tuned to follow instruc-
tions (Chung et al., 2022; Touvron et al., 2023; Al-
mazrouei et al., 2023; Jiang et al., 2023), which are
designed to interact with users via prompts, prompt-
ing emerged as a way to directly query LLMs for
the knowledge they encode (Li et al., 2022; Blevins
et al., 2023; Hu and Levy, 2023).

What is the effect of the instruction tuning pro-
cess on a model’s knowledge of semantic plausi-

bility? And as prompting does not suffer from
the confounders of log-likelihoods (e.g. frequency,
word length etc.), could it turn out to be a better
method for extracting plausibility knowledge? To
address such questions, we use both log probabili-
ties and prompting with base and instruction LLMs
to rate the sentences of two datasets, and compare
the predictions with human-elicited ratings.

2 Experiments

2.1 Datasets
We used two sentence sets adapted from previous
studies: a schematic illustration of the items in each
of the datasets can be seen in Table 1.

EventsAdapt (Fedorenko et al., 2020) is composed
of 391 items, each of which includes (i) a plausi-
ble active sentence that describes a transitive event
in the past tense, (ii) the implausible version of
the same sentence, constructed by swapping the
noun phrases, as well as passive voice alterna-
tives. The items fall into one of two categories:
a) animate-inanimate items (AI), where the swap
of the noun phrases leads to impossible sentences;
and b) animate-animate ones (AA), where role-
reversed sentences have milder plausibility viola-
tions. Given these differences, we model the two
subsets independently.

DTFit (Vassallo et al., 2018) contains 395 items,
each of which includes (i) a plausible active sen-
tence that describes a transitive event in the past
tense, where an animate agent is interacting with
an inanimate patient that is typical for the agent;
(ii) or less plausible version of the same sentence
with a less typical patient. Typicality values, in this
case, depend on the interaction of the patient with
both the agent and the verb.

For each set, human plausibility ratings have



Dataset Plausible? Possible? Voice Example Source

EventsAdapt
(AA, unlikely)

Yes Yes Active The nanny tutored the boy.

Fedorenko et al. (2020)

Passive The boy was tutored by the nanny.
No Yes Active The boy tutored the nanny.

Passive The nanny was tutored by the boy.

EventsAdapt
(AI, impossible)

Yes Yes Active The teacher bought the laptop.
Passive The laptop was bought by the teacher.

No No Active The laptop bought the teacher.
Passive The teacher was bought by the laptop.

DTFit
(AI, unlikely)

Yes Yes Active The actor won the award. Vassallo et al. (2018)No Yes Active The actor won the battle.

Table 1: Example stimuli from the datasets used in Experiment 1. Names in parentheses indicate event participant
animacy (AI = animate agent, inanimate patient; AA = animate agent, animate patient) and the plausibility type of
the implausible sentences in the dataset (impossible vs. unlikely).

been collected. We averaged human ratings to ob-
tain a single score for each sentence, and assigned a
hit every time the plausible version of the sentence
was scored higher than the implausible one.

2.2 Model Plausibility Judgments
We used the Base and the Instruct 7B version of
three autoregressive LLMs: Mistral (Jiang et al.,
2023), Falcon (Almazrouei et al., 2023), and MPT
(MosaicML NLP Team, 2023), and we included
GPT2-XL (Radford et al., 2019) (1.5B parameters)
as a baseline.

We evaluated the models using (i) LL score, and
(ii) several zero-shot prompting methods. The LL
score is simply the sum of the log-likelihoods of
each token wi in a sentence.For (ii), we test several
prompts designed to explicitly query the LLMs’
knowledge of plausibility, using either the same or
similar instructions to the task that humans solved
on the original datasets.

For each item, we compared the scores of the plau-
sible and the implausible sentence conditions, and
assigned a hit every time the plausible version gets
a higher score. We considered, as a model’s accu-
racy, the ratio of the dataset items in which plausi-
ble sentences received a higher probability score.

3 Findings

In our experiments, we found that LL scores are
the most effective estimates of semantic plausibil-
ity across model architectures, performing consis-
tently above chance on all the sentence subsets,
although we observed that on the more challenging
EventsAdapt (AA, unlikely) subset (i.e. the one not
including any animacy distinction between agent
and patient), the performance of all models drops
significantly (see Figure 1).

Figure 1: Results of sentence plausibility judgment per-
formance across models and datasets, using LL scores
vs. prompting (scores under best prompt settings).

On the other hand, prompting approaches were
often a hit-and-miss, with Mistral-7B being the
only LLM being consistently above chance, at least
in the best prompt settings.

Finally, we found that instruction models per-
form similar or slightly worse than the correspond-
ing base models, mainly due to a weak performance
in estimating plausibility with active voice sen-
tences. The result is in line with other recent find-
ings: although instruction tuning seems to improve
LLM alignment with brain representations, it does
not always help for alignment at the behavioral
level (Kuribayashi et al., 2024).
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